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This paper presents the vibration analysis and suppression control of a moving elevator
string. A dynamic formulation is proposed first for the non-linear vibrations of the string
with time-varying length and a weight attached at the lower end. The permanent magnet
(PM) synchronous servo motor is used as the actuator to drive the rotor. A set of
non-linear, time-varying differential equations describing this system is derived by
Hamilton’s principle. Due to the winding of the string either on or off the rotor, the mass
and inertia of the rotor are time-dependent. The Galerkin method is used with
time-dependent basis functions to determine the approximate solutions. A variable
structure control (VSC) scheme is applied to suppress the transient amplitudes of
vibrations. The sliding surfaces are determined in terms of the errors between the system
states and the ideal states of the string and the rotor. The numerical results show that the
motion-induced vibrations of the moving string and the tracking performance of the rotor
can be controlled effectively. 71997 Academic Press Limited

1. INTRODUCTION

The system is composed of a string with time-varying length [1, 2] and a mass attached
at the lower end is considered to be a basic model of an elevator in a building. For the
problem of string vibrations with time-varying length, Kotera and Kawai [3] analyzed free
vibration by the Laplace transformation. Fung and Cheng [4] studied the free vibration
of a string/slider system with non-linear coupling. As far as the string vibration is
concerned, little work has appeared on the coupled oscillation, both from the point of view
of the theoretical formulation of the problem and the analysis of the structural behavior.
Moreover, the problem involving the oscillations of a textile machine rotor on which the
textile is wound up was presented in a series of papers by Cventicanin [5, 6]. The dynamics
of a rotor with variable mass are given by Bessonov [7]. Usually, the rotor consists of a
disk which is symmetrically mounted at the middle of the shaft. The mass of the rotor is
varying due to winding on or off the band.

In recent years advancements in magnetic materials, semiconductor power devices, and
control theory have made the PM synchronous servo motor play a vitally important role
in the motion-control applications in the low-to-medium power range. The desirable
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features of the PM synchronous servo motor are its compact structure, high airgap flux
density, high power density, high torque-to-inertia ratio, and high torque capability.
Moreover, compared with an induction servo motor, a PM synchronous servo motor has
such advantages as higher efficiency, due to the absence of rotor losses and lower no-load
current below the rated speed, with its decoupling control performance being much less
sensitive to the parameter variations of the motor [8, 9]. To achieve fast four-quadrant
operation and smooth starting and acceleration, the field-oriented control [10], or vector
control, is used in the design of the PM synchronous servo motor drive.

Vibration of the moving continua usually limits their utility in many applications, and
particularly in high speed, precision systems. Vibration control is an important approach
to improve performance in these systems. Previously, vibration reduction is generally
achieved through the modifications in design to increase the effective stiffness or damping.
In addition, active vibration control has been receiving increasing interest in recent years
[11]. The active control, in general, requires continuous monitoring of the responses [12].
Radcliffe and Mote [13] developed a laboratory active control system for circular saws
where electromagnets were used to increase the effective damping and stiffness of
transverse vibrations. Mote and Holoyen [14] also developed an active control system for
temperature control of a circular saw. Controlling saw temperature is one indirect method
which reduces saw vibration through effective stiffness modification.

A moving string belongs to a class of distributed parameter systems. Control of
distributed parameter systems is gradually being noticed [15, 16]. Ulsoy [17] studied the
active vibration problem through pole allocation and used an adaptive control scheme
which takes into account the vibration induced by the translation motion of the string.
From a practical point of view, Yang and Mote [18] presented a method for active
vibration control of an axially moving string. They accounted for the dynamics of
actuators and sensors. The control was formulated in the Laplace transform domain and
carried out by analyzing the root loci of the closed-loop system.

The use of the sliding mode technique, derived from the variable structure control (VSC)
theory, has been widely considered for both linear and non-linear systems [19]. A general
VSC design method has been developed and the property of well robustness of a VSC
system with respect to system perturbation and disturbance has now been recognized
[20–22]. In fact, VSC has been applied to some flexible structures. Ficola et al. [23]
presented a simplified strategy to implement VSC of a robot with a flexible forearm. Fung
and Liao [24] studied the vibration reduction in an axially moving string by the application
of a VSC scheme. The design of the VSC controller is based on the independent mode
space control (IMSC) method. The major aspect in VSC theory is implemented by the
sliding mode. The design of the controller consists of enforcing the system motion on some
manifold in system state space.

In this paper, the coupled dynamic equations for the elevator system are derived by
Hamilton’s principle. The rotating rotor with variable mass and inertia is considered. In
addition, the coupling provides the opportunity that the transverse vibration of the string
can be suppressed by the control acting on the current of the PM synchronous servo motor.
The organization of the paper is as follows. In section 2, the coupled model for the elevator
system including both the motions of the string and the rotor are described and formulated.
In section 3, the non-dimensional variables are defined and the Galerkin method used with
a time-dependent basis function, to determine the approximate solutions. In section 4, a
general matrix form of the equations of motion for the elevator system is formulated. Then,
design of the VSC controller is discussed. In section 5, numerical results include: (i)
vibration responses of the elevator system presented to deal with the motion-induced
vibration and convergence analysis of the transient responses of the coupled system; (ii)
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Figure 1. The sketch of the elevator system.

implementation of vibration suppression based on the VSC algorithm. Finally, the
conclusions are drawn in section 6.

2. EQUATIONS OF MOTION

2.1.  

In Figure 1, the elevator system is shown and a plane Cartesian co-ordinate system is
adopted. The rotation of rotor is driven by a PM synchronous servo motor. Figure 2 shows
the PM synchronous servo motor including a geared speed-reducer. The mass per unit
length of the string is r, and its transport velocity is ẋ and acceleration is ẍ. The length
of the string at time t is l(t), and the radius of the rotor at time t is R(t). Neglecting the
effect of sag, the cable is considered as a linear elastic string. The string is wound on a
drum at the top end and a mass M is attached at its lower end. The mass is allowed to
move along the x direction only. The transverse displacement of the string at an axial
position x is described by the field variable w(x, t). The string is subjected to an initial
tension T which is due to the weight of the attached mass and the string weight and is
assumed to be simply supported at x=0 and l(t) due to small vibration assumption.

Since the connection point (0, R(t)) is common to the rotor and string, this point on
the string has the same velocity and acceleration as that on the rotor in the tangential
direction.

Figure 2. Schematic of the motor-gear mechanism.
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2.2.  

The function of the rotor is to wind the string on or off, so that the rotor mass is variable.
In Figure 1, R(t) is the radius of the disk, and u is the rotary angle. The string is subjected
to an initial tension T(x, l(t)) which is represented by equation (A4) of Appendix A, so
this force acts along the tangent line of the rotor in the undeformed configuration. From
the geometry of Figure 1, the time-varying length of the string is given by

l(t)= l0 −g
u

0

R(o) do, (1)

where l0 is the string length at initial time and R is a function of u which is described in
equation (3).

2.3.  

The rotor is modelled as a rigid disk mounted on a massless shaft which is supported
by two perfect rotating bearings. As given in the papers by Cventianin [5] and Tsai [25],
the time-varying mass m(t) and radius R(t) of the rotor are assumed to be

m(t)=m0 +R1ru(t), R(t)= (R2
0 +R1hu(t)/p)1/2 (2, 3)

respectively, where m0 and R0 are the initial mass and initial radius of the rotor,
respectively, u(t) is the angular velocity of the rotor and has a positive value for the string
to be wound on, R1 =R0 + h/2, and h is the average thickness of the string.

The governing equations can be written as (the derivations are detailed in Appendix A)

wtt +2ẋwxt +(ẍ+ g)wx −[ẋ2 −Mg/r− g(l(t)− x) ]wxx − 3
2 (EA/r)w2

xwxx =−R� (t),

0Q xQ l(t) (4a)

u� +[I� (t)/I(t)]u� +[R(t)/2I(t)]{r[ẋ2 + ẋ2w2
x (l(t), t)+R� 2(t)+2ẋR� wx (l(t), t)]

− [Mgw2
x (l(t), t)+ 1

4EAw4
x (l(t), t)]+2Mg+2rgl(t)}= te /I(t), (4b)

and the boundary conditions are

w(0, t)=0, w(l(t), t)=0. (5a, 5b)

where te is the torque applied to the rotor, I(t)= 1
2m(t)R2(t) is the inertia of the rotor and

ẋ=−R(t)u� , ẍ=−R� (t)u� −R(t)u� . (6a, 6b)

Some remarks are made here:

(i) In this paper, the longitudinal elastic deformation of the string is neglected, so every
point along the string has the same axial travelling velocity ẋ and acceleration ẍ, which
are given by equations (6a, 6b).

(ii) The terms containing EA in equations (4a, 4b) are due to the geometric non-linearity
of the string. If they are neglected for the small-amplitude transverse vibrations of the
string, the governing equation (4a) becomes linear. However, equation (4b) is still
non-linear, due to the coupling at the boundary x= l(t).

(iii) For the case with constant angular velocity, the radius R(t) of the rotor and the
axial velocity ẋ of the string are still functions of time. Thus, R� (t) is not equal to zero,
and the axial travelling acceleration ẍ also exists.

(iv) The terms including wx (l(t), t) in equation (4b) are the end effect at x= l(t) of the
string vibration on the rotor.
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(v) The mass and inertia of the rotor are time-varying when the string is wound on or
off, therefore the non-linear governing equations (4a, 4b) include the time-dependent mass
m(t) and inertia I(t).

2.4.     

The machine model of a PM synchronous motor can be described in the rotor rotating
reference frame as follows [9, 10].

vq =Rs iq + plq +vsld , vd =Rs id + pld −vslq , (7, 8)

where p denotes the differential operator d/dt and

lq =Lq iq , ld =Ld id +Lmd Ifd . (9, 10)

In the above equations vd and vq are the d, q axis stator voltages, id and iq are the d, q axis
stator currents, Ld and Lq are the d, q axis inductances, ld and lq are the d, q axis stator
flux linkages, while Rs and vs are the stator resistance and inverter frequency, respectively.
In equation (10) Ifd is the equivalent d-axis magnetizing current, and Lmd is the d-axis
mutual inductance.

The electric torque

TL =(3P/2)[Lmd Ifd iq +(Ld −Lq )id iq ], (11)

and the equation for the motor dynamics is

Tm =TL +Bmu� m + Jmpu� m . (12)

In equation (11), P is the number of pole pairs, TL is the electric torque, Bm is the
damping coefficient, u� m is the rotor speed and Jm is the moment of inertia of rotor in
the PM motor.

The basic principle in controlling a PM synchronous motor drive is based on the field
orientation. The configuration of a general field-oriented PM synchronous motor drive

Figure 3. The field-oriented PM synchronous servo motor drive system.
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system is shown in Figure 3. With the implementation of field-oriented control, some
relationships are proposed [9] in the PM synchronous motor drive system as follows

Tm =KT iq , KT = 3
2PLmd Ifd , (13, 14)

From Figure 2, a PM synchronous motor system includes a geared speed reducer with
a gear ratio

r=TL /te = u� /u� m . (15)

Using equations (15) and (12), the following applied torque can be obtained

rte =TL =Tm − Jmu� m −Bmu� m . (16)

2.5.     -- 

With implementation of the field-oriented control, the PM synchronous motor drive can
be simplified to a control system. Now one substitutes equations (13) and (16) into
equation (4b) to obtain

Jmu� m +Bmu� m + r{I(t)u� (t)+ I� (t)u� (t)+ (R(t)/2)[ẋ2 + ẋ2wx (l(t), t)+R� 2(t)+2ẋR� wx (l(t), t)

−Mgw2
x (l(t), t)− 1

4EAw4
x (l(t), t)+2g(M+ rl(t))}=KT iq . (17)

From the relationship between u and um in equation (15), equation (17) is formulated as

u� +
Bm + r2I� (t)
Jm + r2I(t)

u� +
r2R(t)

2(Jm + r2I(t))
{r[ẋ2 + ẋ2w2

x (l(t), t)+R� 2(t)+2ẋR� wx (l(t), t)]

−Mgw2
x (l(t), t)− 1

4EAw4
x (l(t), t)+2Mg+2rgl(t)}=

rKT iq
Jm + r2I(t)

. (18)

Equation (4a) and equation (18) constitute the governing equations of the
elevator-plus-actuator system.

3. METHOD OF SOLUTION

3.1.      

For convenience in determining the influence of the parameters of the coupled system,
one defines the following non-dimensional variables and parameters:

W=w/l0 , j= x/l0 , t= c2 t/l0 , l�= l(t)/l0 , ḡ= gl0 /c2
2 , Lm = Jm /rl30 ,

B�M =Bm /rc2 l20 , R� =R(t)/l0 , I�= I(t)/rl30 , M� =M/rl0 ,

A�Q =KT iq /rc2
2 l0 , b= c1 /c2 , (19)

where c1 =zEA/r, c2 =zT0 /r, which are the wave velocities of the string in the
longitudinal and transverse directions, respectively. Then equation (4a) and equation (18)
in non-dimensional form are

Wtt +2jtWjt +(jtt + g)Wj +[j2
t −1−(1/M� )(l�− j)]Wjj − 3

2b
2W2

j Wjj =−R� tt ,

0Q jQ l�, (20a)
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utt +
B�M + r2I�t

LM + r2I� ut +
r2R�

2(LM + r2I�) {[j2
t +R�2

t +2jtR�tWj (l�, t)+ j2
t W2

j (l�, t)]

− [M�ḡW2
j ( l�, t)+ 1

4b
2W4

j ( l�, t)]+2ḡ(M� + l�}= rA�Q /(LM + r2I�), (20b)

and the non-dimensional boundary conditions are

W(0, t)=0, W( l�, t)=0. (21a, 21b)

3.2.      

The spatial dependence can be eliminated from the equations of the coupled system to
yield a set of ordinary differential equations in time, which can be solved for the system
response. The approximate solution derived in this section is based on a Galerkin
approximation with time-dependent basis functions. This technique was used by Fung and
Cheng [4] to investigate the free vibration of a non-linear coupled string/slider system with
a moving boundary. Based on this method, the forms of the displacements are assumed
to satisfy the geometric boundary conditions of the string, that is

W(j, t)= s
a

n=1

8n (j, l�)qn (t), 0Q jQ l�, (22)

where qn (t) are the generalized co-ordinates and the shape functions of the space variable
are

8n (j, l�)= an (t)sin [Vn (t)j], n=1, 2, 3 . . . , (23)

in which

Vn (t)= np/ l�, an (t)=z2/ l�, n=1, 2, 3 . . . . (24)

an is used to normalize the shape function. Since the spatial domain is time-dependent, both
eigenfunctions 8n (j, l�) and eigenvalues Vn (t) are time-dependent.

Substituting equations (22), (23) and (24) into (20a) and (20b), taking inner products
and making use of the orthogonality property, one has a set of non-linear time-varying
ordinary differential equations

q̈m + s
a

n=1

[amn ( l�, l�� )q̇n + bmn ( l�, l�� , l�� )qn ]− s
a

i=1

s
a

j=1

s
a

k=1

cmijk ( l�)qi qj qk =Gm , (25a)

u� + aru� + s
a

n=1

br
n ( l�)qn + s

a

n=1

s
a

i=1

cr
ni ( l�)qnqi + s

a

n=1

s
a

i=1

s
a

j=1

s
a

k=1

dr
nijk ( l�)qnqi qj qk =Fr( l�), (25b)

where m, n, i, j, k=1, 2, . . . are the modes considered in the string system and all of the
coefficients are presented in detail in Appendix B. In equations (25a) and (25b), the dot
symbol is also used to represent the time derivative with respect to the non-dimensional
time t for a non-dimensional variable.

4. VARIABLE STRUCTURE CONTROL

4.1.       

In this section, VSC algorithm is proposed to suppress the transient amplitudes of the
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string vibrations. One rewrites the above non-linear coupled ordinary differential equations
(25a) and (25b) in matrix form as

M(X)X� +H(X, X� )+K(X)X=U, (26)

where M(X)$R(N+1)(N+1) is an inertia matrix, X=[q1 , q2 , q3 , . . . , qN , u] is the vector of
variables, qi are the unknown generalized co-ordinates in the Garlerkin discretization,
H(X, X� )$RN+1 is the vector of non-linear terms, K(X)$R(N+1)(N+1) is a stiffness matrix and
U$RN+1 is the vector of the external input current which is supplied by the PM
synchronous servo motor. N is the number of modes chosen for analysis. The details of
matrix M(X), H(X, X� ), K(X) and U are shown in Appendix B.

By defining the state vector for the system as

x(t)= [X, X� ]T = [q1 , q2 , q3 , . . . , qN , u, q̇1 , q̇2 , q̇3 , . . . , q̇N , u� ]T.

The dynamic equation in equation (26) can be rewritten in the state space:

ẋ(t)=L(x)x+ J(x)u+N(x), (27)

where u=A�Q is the control input of the state equation, and

L(x)=$[0](N+1)(N+1)

−M−1K
I

[0](N+1)(N+1)%, J(x)=$ [0]N+1

M−1B'%,
N(x)=$ [0]N+1

−M−1H%, B'=$[0]N+1

1 %.
Suppose that the desired state xd (t)= [x1d , x2d , x3d , . . . , x(2N+2)d ]T has been selected for

the desired behavior of the state variables. A choice is given by

x1d = q1d =0, x2d = q2d =0, . . . , xNd = qNd =0, x(N+1)d = ud ,

x(N+2)d = q̇1d =0, x(N+3)d = q̇2d =0, . . . , x(2N+1)d = q̇Nd =0, x(2N+2)d = u� d .

Physically, they represent zero transverse deflection during the desired motion of rotor.
To ensure trajectory tracking in VSC law by the state variables, one defines the tracking
errors as

e=[ei , e2 , e3 , . . . , e2N+2 ]T = x(t)− xd (t). (28)

Then the following switching surface S $R is defined as a hypersurface

S(e)=Ce, (29)

where C=[c1 , c2 , c3 , . . . , c2N+2 ], ci are constants. Also S can be written in the specific
form:

S= s
2N+2

i=1

ci ei . (30)

4.2.       

The main requirement in the reaching mode design is that the control should satisfy the
reaching condition, which in turn guarantees the existence of the sliding mode on the
switching manifold. Additional requirements include fast reaching and low chattering.
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Specifying a scheme for the switching order is also a part of a VSC design. In this
subsection, the reaching law method is introduced.

The reaching law is one differential equation which specifies the dynamics of a switching
function. The differential equation of an asymptotically stable switching function is itself
a reaching condition. In addition, by the choice of the parameters in the differential
equation, the dynamic quality of VSC in the reaching mode can be controlled. The
treatment given here is to define the reaching law as

S� =−PS−Q=S=k(S/(=S=+ d)), 0Q kQ 1, (31)

where P and Q are constant coefficients and d is the boundary layer. The reaching law
increases the reaching time and speed when the state is far away from the switching
manifold. In particular, the reaching law can reduce the hitting time in the reaching phase
by a choice in [26]. Moreover, the reaching law in [24] increases the reaching speed when
the state is far away from the switching manifold and reduces the rate when the state is
nearby. Therefore, the state is enforced to approach the switching manifold fast by the
choice of equation (31). The selecting of the reaching law guarantees the convergence
of the trajectory to the sliding surface described by equation (30). It can be easily
proved that

S� SQ 0.

Differentiating S in equation (30) with respect to time gives the sliding mode equation

S� =Cė= s
2N+2

i=1

ci ėi = s
N+1

i=1

ci ei+N+1 + s
2N+1

i=N+2

ci0 s
N

j=1

Lij xj + Ji u+ ni1
+(L2N+2, j xj + J2N+2u+ n2N+2 − u� d ). (32)

From equations (31) and (32), one obtains the control input u,

u=
1
D $−PS−Q=S=k S

=S=+ d
− s

N+1

i=1

ci ei+N+1 − s
2N+1

i=N+2

ci0 s
N

j=1

Lij xj + ni1
−0 s

N

j=1

L2N+2, j xj + n2N+21+ u� d%, (33)

where

D= s
2N+1

i=N+2

ci Ji + J2N+2 .

5. NUMERICAL RESULTS AND DISCUSSION

During numerical simulations, the convergence of the transient responses of the
Garlerkin method and the motion-induced vibration problems of the elevator system are
proposed. The dynamic equations of the elevator system in equations (25a) and (25b)
are integrated by the Runge–Kutta method. The examples given here are chosen
to study the coupling effect on the transient vibrations of the elevator system. The
parameters are T0 =100 N, r=1 kg/m, m0 =4·95 kg, h=0·02 m, KT =0·9 Nm/A,
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Jm =3·92 ×10−3 N m s2 and Bm =1×10−3 N m s/rad. Our purpose is to acquire
fundamental knowledge about the transverse vibrations of the moving string with zero
initial values qi (0)=0. In the governing equation (25a), the responses qi depend on the
non-homogeneous term Gm whose detailed expression is shown in Appendix C. It means
that the variation of the rotor radius excites the transverse vibrations of the moving string.
In addition, from the remark (i) stated in section 2, one can obtain the relationships ẋ= l�
and ẍ= l� . Thus, the variation of the rotor is also governed by the time history of the string
motion. In the following section, some specific motions of the rotor and the string will be
simulated where qi (0)=0, q̇i (0)=0.

5.1.  

5.1.1. Convergence analysis of the transient responses
In this study, it is necessary to know whether or not the transient response converges

as the number of terms in the Galerkin discretization increases. Usually, the norm of the
generalized co-ordinates is used for the analysis. One defines

=Fm ==0s
m

i=1

q2
i 1

1/2

, DFm−1,m = =Fm =− =Fm−1 =, (34, 35)

where m is the maximum mode number taken.
A Hermite polynomial is chosen as the desired time history of the dimensionless string

length l�d (t). It is written as

l�d (t)= l�i +(l�f − l�i )070
t9

t9
f
−315

t8

t8
f
+540

t7

t7
f
−420

t6

t6
f
+126

t5

t5
f1, (36)

where tf is the dimensionless ending time, l�i is the initial string length and l�f is the final
string length. Figures 4(a–d) show the difference of the norms evaluated by equation (34)
and the parameters are tf =2, l�i =1 and l�f =0·2 in equation (36). The number of modes
is increased from 3 to 9. It is seen that the difference between eight- and nine-term
approximations is reduced to a quite small value. For this reason, it is observed that the
transient response converges when the number m=9 is taken in the Garlerkin

Figure 4. The difference between the norms of the generalized co-ordinates. (a) mode 4 minus mode 3, (b)
mode 5 minus mode 4, (c) mode 8 minus mode 7, (d) mode 9 minus mode 8.
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discretization. To save printing space, the vibration amplitudes of the first four modes
(m=4) are shown for discussing the vibration phenomena of a moving string.

5.1.2. Motion-induced vibration
Observing equation (25a), if the motion of the rotor is known or specified, i.e., R�tt is

given, the time history of the transverse vibration of the string could be completely
determined. The motion-induced vibration of the elevator system is governed by equation
(25a), and can be obtained by directly integrating this equation. The reference input is
selected to coincide with the entire motion of an elevator. In general, the operation of a
motor includes three steps: accelerating from rest, maintaining a constant speed and
decelerating to rest. Thus, the time history of the velocity follows a trapezoidal function
while the motor is in running order. Moreover, we choose the other kinds of reference
inputs which are smoother than the trapezoidal function to implement the motion-induced
vibration and compare them. In this section, the trajectories of the angular position u are
given as the trapezoidal velocity, cycloidal and simple harmonic functions.
Case 1: trapezoidal function. In this section, the trapezoidal function of the angular
velocity of the rotor is assigned. The desired angular velocity u� d versus the dimensionless
time t is given by

40
3 p/t 0E tE 0·5
20
3 p 0·5Q tE 1·5

2u� d =g
G

G

F

f

20
3 p− 40

3 p (t−1·5) 1·5Q tE 2
. (37)

0 2Q t

The sign 2 denotes the directions of the rotating rotor during winding on and off. u� d has
a positive value when the string is being wound on. During retraction (extrusion), one takes
the initial length of string l0 =10 m (l0 =2 m) and initial radius R0 =0·2 m (R0 =0·26 m).
In Figures 5(a–h), the transient responses of the transverse vibrations for the first four
modes during extrusion and retraction are compared. The solid line is used for the
retraction while the dash line is used for the extrusion. In these figures, the vibration
amplitudes q1 , q2 , q3 and q4 are excited simultaneously by the non-homogeneous term Gm .
The time history u having positive or negative values depends on whether the string is
wound on or off. It is seen that the vibration amplitudes for the first four modes are
gradually reduced and the frequencies increase when the string is wound on. Conversely,
the vibration amplitudes increase gradually and the frequencies decrease when the string
is wound off. Meanwhile, the residual vibrations of the first four modes occur after the
ending time t=2.
Case 2: cycloidal function. In this subsection, the cycloidal function is used as the
trajectory of u(t) to discuss the motion-induced vibration problem. The desired function
ud (t) during retraction is written as

ud (t)= ui +(uf − ui )[t/tf −(1/2p) sin (2pt/tf )], (38)

where one chooses the end time tf =2, the initial angular position ui =0, and the final
angular position is uf =10p during retraction and uf =−10p during extrusion. These
values are the same as those in case 1. In Figures 6(a–h), the transient responses of the
moving string for the first four modes during extrusion and retraction are plotted. The solid
line is used for the retraction while the dash line is used for the extrusion. It is shown that
the vibration amplitudes gradually increase and the frequencies for the first four modes
slow down when the length of the string increases. Correspondingly, the amplitudes of
vibration decrease and the frequencies increase when the string length decreases. The
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Figure 5. Motion-induced vibration with a desired trapezoidal function during extraction and retraction.
(a) desired angular position, (b) desired angular velocity, (c) desired angular acceleration, (d) length of the string,
(e) vibration amplitudes of mode 1, (f) vibration amplitudes of mode 2, (g) vibration amplitudes of mode 3,
(h) vibration amplitudes of mode 4. (——, retraction; – – – –, extrusion.)

dominant vibrations of the elevator string occur when the extrusion motion is complete.
In addition, the amplitude and frequency of the residual vibrations after tf =2 are
constants as the motion is complete. These residual amplitudes will be suppressed by
variable structure control.

At this point one considers the vibration results in cases 1 and 2. These transverse
amplitudes are quite small due to the small values of the non-homogeneous terms. In
fact, the variation of the rotor radius R(t) is much slower than those of the angular
position u and the string length l. Although the angular velocities of the rotor shown in
Figures 5(b) and 6(b) and the speeds of extrusion and retraction shown in Figures 5(d)
and 6(d) are very fast, the variation of the rotor radius is still not apparent (not
shown here).
Case 3: simple harmonic function. In case 3, the trajectory used in the motion-induced
vibration is a simple harmonic function as follows.

ud (t)= ui +((uf − ui )/2)(1−cos (pt/tf )). (39)

The values ui , uf and tf are the same as in case 2. The comparisons of the motion of
the rotor and the transient responses of the string for cases 1, 2 and 3 are shown in
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Figures 7(a–f). It can be observed that one obtains lower frequencies and smaller
transient amplitudes for modes 1 and 2 as the simple harmonic motion is used.

Time histories of the string length and its transverse transient responses during retraction
are shown in Figures 8(a–g). The response of the first four modes are shown for the
comparison between the linear case (b=0, solid line) and the non-linear one (b=10, dash
line). The Hermite polynomial is used as the desired motion of the string. It is observed
that the frequencies of transient responses are higher when the non-linear term is
considered. In addition, the influence of the non-linear term is gradually apparent during
retraction and a beating phenomenon occurs after the ending time tf =2. When the motion
of the string is complete, the non-linear term becomes very important. It is due to the fact
that decreasing l�"t) causes the increasing of the non-linear term. At the same time, a free
vibration occurs after tf =2 and q(2) and q̇(2) are the initial conditions for the free
vibration of the string. Thus, the beating phenomenon is affected by the scale of the
non-linear term at l�f =0·2 and the initial conditions.

5.2.   

It has been discussed previously that the desired motion of rotor excites the transverse
vibrations of the string. The string has residual oscillations after the motion is complete.

Figure 6. Motion-induced vibration with a desired cycloidal function during extraction and retraction.
(a) desired angular position, (b) desired angular velocity, (c) desired angular acceleration, (d) length of the string,
(e) vibration amplitudes of mode 1, (f) vibration amplitudes of mode 2, (g) vibration amplitudes of mode 3,
(h) vibration amplitudes of mode 4. Key as for Figure 5.
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Figure 7. Motion-induced vibration in comparison with three kinds of the string motion for cases 1, 2 and
3. (a) desired angular position, (b) desired angular velocity, (c) desired angular acceleration, (d) length of the
string, (e) vibration amplitudes of mode 1, (f) vibration amplitudes of mode 2. (——, simple harmonic; – – – –,
trapezoidal; · · · · , cycloidal.)

In simulations, the reaching law for the VSC scheme is chosen as the controller of the
elevator system to suppress these motion-induced vibrations. Various parameters of the
system are the same as those in section 5.1. Furthermore, the first four modes (N=4)
in the Galerkin discretization are used for analysis. Thus, the sliding surface S is
determined as

S= c1e1 + c2e2 + c3e3 + c4e4 + c5e5 + c6e6 + c7e7 + c8e8 + c9e9 + c10e10 . (40)

And the VSC input is obtained as

u=(1/D)[−PS−Q=S=kS/(=S=+ d)− c1e6 − c2e7 − c3e8 − c4e9 − c5e10

− c6 (L61x1 +L62x2 +L63x3 +L64x4 + n6 )− c7 (L71x1 +L72x2 +L73x3 +L74x4 + n7 )

− c8 (L81x1 +L82x2 +L83x3 +L84x4 + n8 )− c9 (L91x1 +L92x2 +L93x3 +L94x4 + n9 )

− (L10,1x1 +L10,2x2 +L10,3x3 +L10,4x4 + n10 − u� d )], (41)
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where

D= c6J6 + c7J7 + c8J8 + c9J9 + J10 .

The switching function described in equation (40) includes not only the tracking error of
the rigid body motion but also the errors of the oscillation modes. The control input in
VSC law is designed to ensure the situation that there are no tracking errors and transverse
vibrations when the elevator system reaches the sliding condition S=0 by the choice of
the dynamics of switching function in equation (31). The boundary layer d=0·0001 is
chosen. In the following simulations, the values of P, Q and the gains in matrix C are
determined by the method of trial-and-error. In fact, many possible combinations of the
constants and gains have been tried and we sift out the present combination which results
in an optimum performance of tracking and stability. The numerical results of the control
responses are divided into two parts: extrusion and retraction.

Figure 8. The non-linear effect on the transverse vibration of the string during retraction. (a) length of the
string, (b) retraction velocity, (c) retraction acceleration, (d) vibration amplitudes of mode 1, (e) vibration
amplitudes of mode 2, (f) vibration amplitudes of mode 3, (g) vibration amplitudes of mode 4. (——, linear;
– – – –, non-linear.)
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5.2.1. Extrusion motion

First, the vibration reduction of the elevator string during extrusion is discussed.
During extrusion, the dominant vibration of the string takes place when the motion of the
system is complete. The controller of VSC theory is designed to reduce the residual
vibrations. Three desired trajectories are assumed as the same as those in section 5.1.
A proper choice of the gain matrix and constants P and Q and will ensure the elevator
system stable.
Case 1: cycloidal function. The gain matrix for the switching function which ensures that
the system tends to maintain stability is given as follows:

C=[−170 5 5·5 3·5 1·5 150 1·6 1·5 0·5 1],

and then the constant coefficients are chosen as P=10 and Q=1. The transient vibration
responses, the time histories of angular position u of the rotor and the length of string
l� versus the dimensionless time t are illustrated in Figures 9(a–g). The solid lines in
Figures 9(a) and 9(b) represent the tracking performances of u and l�. The dash lines
denote the desired behavior of the angular position of the rotor and the length of the
string. The tracking performances of u and l� reach the desired position at t=30.

Figure 9. Motion-induced vibration suppression responses for the elevator system with a desired cycoidal
function during extrusion. (a) angular position of rotor u, (b) length of the string l�, (c) vibration amplitude of
mode 1, (d) vibration amplitude of mode 2, (e) vibration amplitude of mode 3, (f) vibration amplitude of mode
4, (g) the norm of generalized co-ordinates. Key: ——, controlled system; – – – –, uncontrolled system.
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Figures 9(c–f) show the transverse vibrations in comparison with the controlled system
(solid line) and uncontrolled one (dash line) for the first four modes. It is observed that
the transient amplitudes can be reduced by VSC law and the residual vibrations are clearly
suppressed for all the modes. In Figure 9(g), the norms of the first four generalized
co-ordinates for the controlled system (solid line) and uncontrolled one (dash line) are
compared. The norm is evaluated by using equation (34). It is shown that the norm decays
rapidly while the dimensionless time increases in the controlled system. The VSC theory
ensures the system is stable because of the reduction of the vibration energy in the elevator
string.
Case 2: trapezoidal function. For the trapezoidal desired trajectory, a suitable gain matrix
for the switching function which makes the system stable is chosen as

C=[−200 0·45 0·55 0·36 2 150 1·6 1·5 0·5 1],

and P=12 and Q=1. Figure 10(a) compares the norm of the first four generalized
co-ordinates by using the VSC law (solid line) with that of the uncontrolled system (dash
line). It is obvious that the norm of the controlled system is much smaller than that of
the uncontrolled system. The transient and residual vibration amplitudes of the moving
string are suppressed and the controller makes the system stable. This result is similar to
case 1.
Case 3: simple harmonic function. In this case, simple harmonic motion is chosen to be
the desired trajectory of the rotor. One selects the gain matrix and the constants for the
sliding surface. They are

C=[−210 0·9 1·2 0·4 1·5 160 1·6 1·5 0·5 1],

and P=9 and Q=1. In Figure 10(b), the norm of the moving string in the controlled
(solid line) and uncontrolled (dash line) system is plotted. As with previous discussions in
cases 1 and 2, the VSC controller reduces the transverse amplitudes of the vibrating string
and the total energy tends to decay. In these three cases, the major suppression effort
appears in the residual vibrations. One concludes that the convergence of the tracking
performance and the vibration reduction can be achieved concurrently during extrusion
by the use of VSC.

Figure 10. The norm of generalized co-ordinates of the elevator system during extrusion. (a) desired
trapezoidal function, (b) desired simple harmonic function. Key as for Figure 9.
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5.2.2. Retraction motion
The numerical results for the suppression control of the string during the retraction of

the string are presented in this subsection. The desired motions of the rotor and the initial
string length are selected as in section 5.1.
Case 1: trapezoidal function. For the desired trapezoidal trajectory, the gain matrix for
the sliding function is chosen to be

C=[−10000 4·5 5 3·6 10 3000 480 360 300 1].

The constant coefficients are chosen to be P=10 and Q=1. The time histories of the
rotor angular position u and the length of the string l� are shown in Figures 11(a–b). The
tracking performances of u and l� reach the desired position during retraction. The
controlled and uncontrolled transient amplitudes of the first two modes only are illustrated
in Figures 11(c–d). The motion-induced vibration during retraction is discussed in section
5.1. The major vibration amplitudes of the first two modes occur in the interval from t=0
to t=2. It is desired that the controller is designed to suppress the dominant transient
vibrations. From these figures, it is observed that the transient amplitudes of vibration for
the first two modes are apparently suppressed and the major quantities of residual
vibrations are eliminated by using the controller (solid line). Figure 11(e) compares the
controlled results (solid line) of the norms of the first four modes in the elevator string
with the uncontrolled system (dash line). It is shown that the norm decreases quickly and
converges asymptotically with time.

Figure 11. Motion-induced vibration suppression responses for the elevator system with a desired trapezoidal
function during retraction. (a) angular position of rotor u, (b) length of the string l�, (c) vibration amplitude of
mode 1, (d) vibration amplitude of mode 2, (e) the norm of generalized co-ordinates. Key as for Figure 9.
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Figure 12. The norm of generalized co-ordinates of the elevator system during retraction. (a) desired cycoidal
function, (b) desired simple harmonic function. Key as for Figure 9.

Case 2: cycloidal function. In this case, the desired cycloidal trajectory is used. The values
of the gain matrix and the constants for the controlled system are chosen to be

C=[−10000 8500 6500 3600 1·5 3200 480 400 500 1],

and P=10 and Q=10. Figure 12(a) shows the norm of the first four modes of the
elevator string in comparison with the controlled and the uncontrolled systems. It is
observed that the norm in transient response is greatly suppressed and the residual
vibration energy is reduced to a quite small value. It is due to the elimination of the most
transverse amplitudes for the first two modes by using the VSC controller. The residual
amplitude of mode 1 almost approaches zero. The results are the same as those discussed
in case 1.
Case 3: simple harmonic function. In this case, one selects the value of gain matrix and
the constants for the controlled system by using the desired simple harmonic trajectory.
They are

C=[−5000 550 450 1000 1·5 2000 450 330 500 1],

and P=10 and Q=1. The numerical results of the norm with and without the VSC
controller are compared in Figure 12(b). From this figure, one obtains a good convergence
of the norm of the controlled system (solid line). As with the previous two cases, the norm
in the controlled system is considerably smaller than that in the uncontrolled one.

6. CONCLUSIONS

A complete dynamic model for an elevator system that includes transverse string
vibration and the rotor rotation has been formulated. In this paper, the dynamics of the
PM synchronous servo motor, the time-dependent mass and radius of the rotor, and the
time-dependent length of the string have been considered. First, the partial differential
equations are derived by Hamilton’s principle. Second, the dimensionless parameters and
the Galerkin method are used to obtain the resulting ordinary differential equations. In
numerical analysis, the convergence of the transient response problem in the Galerkin
discretization and motion-induced vibration is studied.
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The variable structure control has been developed for the vibration reduction of the
elevator system. The controlled system is assigned simultaneously to meet the reaching
condition and to make the elevator system asymptotically stable. Moreover, the advantage
of this control method is straightforward and easy to implement. Finally, the numerical
results obtained for some specific motions of rotor are given. From the numerical results,
the following conclusions can be drawn:

1. In the Galerkin discretization, a finite number of modes is sufficient to represent the
elastic vibration of the string in practice.

2. The variation of the rotor radius excites the transverse vibration of the moving string
and the radius of the rotor is determined by the rotary motion of the rotor.

3. In the motion-induced vibrations, the transient amplitudes decrease during retraction
and increase during extraction. The frequencies of oscillation increase during retraction
and decrease during extrusion.

4. In considering the non-linear term, the frequency of the string vibration is quicker
than that of the linear system. A beating phenomenon occurs after the rotor motion stops
when the non-linear term is considered.

5. Due to the motion of the rotor and the transverse vibrations of the moving elevator
string being coupled, it provides the opportunity that the transverse vibration of the string
can be suppressed by controlling the current of the PM synchronous servo motor.

6. During extrusion, the residual vibrations are suppressed and the total energy of the
elevator string decays fast by application of VSC theory. In addition, the transient
amplitudes of the elevator string are reduced and the residual vibrations are almost
eliminated during retraction. The vibration energy can be minimized and the elevator
system is stabilized.
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APPENDIX A

A1.   

From Figure 1, the position and velocity vectors of any point on the string after
deformation are respectively

r= x(t)i+[R(t)+w(x, t)]j, V=dr/dt= ẋi+(R� (t)+wt + ẋwx )j, (A1, A2)

where i, j are unit vectors that point in the directions of increasing x and y, respectively.
The Lagrangian function for the string is the kinetic energy minus the potential energy.

Thus, one has

Ls =
1
2 g

l(t)

0

rV · V dx−g
l(t)

0

(ToE + 1
2EAo2

E ) dx

=
1
2 g

l(t)

0

{r(ẋ2 +w2
t + ẋ2w2

x +R� 2(t)+2ẋwxwt +2ẋwxR� (t)+2R� (t)wt )

− [T(x, l(t))w2
x + 1

4EAw4
x ]} dx=g

l(t)

0

L*s (x(t), t; w, wx , wt ) dx, (A3)
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where oE = 1
2w

2
x is the engineering strain, EA denotes the rigidity of the string, ToE and 1

2EAo2
E

are respectively the strain energies due to the initial tension and the deflection. The latter
is measured from the initially tensioned configuration. Since the string is hung under not
only the weight of the concentrated mass at the lower end but also its own weight, the
tension can be expressed as

T(x, l(t))=Mg+ rg(l(t)− x). (A4)

A2.  

The Lagrangian function of the rotor is

Lr = 1
2 I(t)u�

2. (A5)

In order to derive the virtual work done by the initial tension T on the rotor, the
virtual displacement at the connection point will be obtained first. The string length can
be written as

l(t)= l0 −g
u

0

R(o) do= l0 − (2/3K)[(R2
0 +Ku(t))3/2 −R3

0 ], (A6)

where

K=R1h/p.

The virtual displacement of the connection point is

dl(t)=−(R2
0 +Ku(t))1/2 du=−R(t) du. (A7)

The virtual work done by the external torque and the initial tension can be expressed as

dW= te du+T · dl(t)= {te −T(0, l(t))R(t)} du. (A8)

A3.      

To obtain the equations for the coupled system, the calculus of variations and
Hamilton’s principle are applied. However, the application of the principle is not
straightforward, since there is a moving boundary involved at x= l(t), where the position
is not specified.

The entire system including the textile with length 0 E xE l(t) and the rotor is
considered. Hamilton’s principle can be written as

g
t2

t1
$d g

l(t)

0

L*s (x, t; w, wx , wt ) dx+ dLr (t; u� )+ dW% dt=0, (A9)

where t1 and t2 are two arbitrary end times. Taking the variation in equation (A9), applying



  421

the partial integration technique, using Leibnitz’s rule, and collecting like terms, one
obtains

0=g
t2

t1
6L*s (l(t), t; w(l(t), t)) dl(t)+g

l(t)

0

dL*s (x(t), t; w, wx , wt ) dx+ dLr (t; u� )+ dW7 dt

=g
t2

t1
6−R(t)L*s (l(t), t; w(l(t), t))du+g

l(t)

0 01L*s
1w

−
1

1x
1L*s
1wx

−
1

1t
1L*s
1wt 1 dw dx

+$1L*s
1wx

dw%
x= l(t)

x=0

+01Lr

1u
−

1

1t
1Lr

1u� 1 du+[te −T(0, l(t))R(t)] du7 dt

+$g
l(t)

0

1L*s
1wi

dw dx+
1Lr

1u�
du%

t2

t1

. (A10)

The varied path coincides with the true path at the two end points t1 and t2 . It follows
that dw(t1 )= dw(t2 )=0 and du(t1 )= du(t2 )=0. From equation (A10) we can obtain
Lagrange’s equations for the string and rotor, respectively, as

1L*s /1w−(1/1x)(1L*s /1wx )− (1/1t)(1L*s /1wt )=0, 0Q xQ l(t), (A11)

1Lr /1u−(1/1t)(1Lr /1u� )+ te −R(t)[T(0, l(t))+L*s (l(t), t; w(l(t), t))]=0, (A12)

and the boundary conditions are

w(0, t)=0, w(l(t), t)=0. (A13, A14)

Substituting the Lagrangian functions (A2) and (A3) of the string and rotor into
equations (A11) and (A12), one obtains the governing equations (4a) and (4b).

APPENDIX B

The elements of the symmetric inertia matrix M are given as

M(m, n)=61, if m= n
0, if m$ n

, (m, n=1, . . . , N), (B1)

M(m, N+1)=
a

2R� Zm − s
N

n=1

R�Bmn , M(N+1, n)=0, (B2, B3)

M(N+1, N+1)=
LM + r2I�

r
, (B4)

where

a=R1h/l20 p, Zm =(z2l�/mp)[1− (−1)m].
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The elements of the vector H are

H(m)= s
N

n=1

[(2Amn +2R�u� Bmn )q̇n ]+ s
N

n=1

[(−R�t u� 2Bmn −2R�u� Emn +R�2u� 2Fmn )qn ],

m, n=1, . . . , N, (B5)

H(N+1)= (B�M + r2I�)/r+(rR�/2)[R�2u� 2 +2ḡ(M� + l�)]+ s
N

n=1

SMbr
n qn

+ s
N

n=1

s
N

i=1

SMcr
ni qn qi + s

N

n=1

s
N

i=1

s
N

j=1

s
N

k=1

SMdr
nijk qn qi qj qk , (B6)

where

SM =(LM + r2I�)/r.

The elements of the symmetric stiffness matrix K are

K(m, n)=Dmn + ḡBmn −(1+ l�/M�)Fmn +(1/M�)Hmn , m, n=1, . . . , N, (B7)

K(m, N+1)=0, K(N+1, n)=0, (B8)

and the elements of the vector U are

U(m)=0, U(N+1)=A�Q , m=1, . . . , N. (B9)

APPENDIX C

The time-varying coefficients of equations (25a) and (25b):

amn (l�, l�� )=2Amn (l�, l�� )+2jtBmn (l�),

bmn (l�, l�� , l�)= (jtt + ḡ)Bmn (l�)+Dmn (l�, l�� , l�� )+2jtEmn (l�, l�� )

+ (j2
t −1−(1/M�)l�)Fmn (l�)+ (1/M�)Hmn ,

cmijk (l�)= 3
2b

2Nmijk (l�), Gm =−R�tt (z2l�/mp)[1− (−1)m],

ar =(B�M + r2It )/(LM + r2I�), br
n (l�)=

r2jtR�R�t

LM + r2I�
np

zl�3
(−1)n,

cr
ni (l�)= (j2

t −M�ḡ)
r2R�

(LM + r2I�)
nip2

l�3 (−1)(n+ i),

dr
nijk (l�)= [r2b2R�/(8(LM + r2I�))] (nijkp4/l�6)(−1)(n+ i+ j+ k),

Fr(l�)= rA�Q /(LM + r2I�)− r2R�/(2(LM + r2I�))[j2
t +R�2

t +2ḡ(M� + l�)]
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where

Amn (l�, l�� ) =g
l

0

8̇n8m dj, Bmn (l�)=g
l

0

8'n 8m dj, Cmn (l�)= jtt g
l

0

8'n 8m dj,

Dmn (l�, l�� , l�� )=g
l

0

8̈n8m dj, Emn (l�, l�� )=g
l

0

8̇'n 8m dj, Fmn (l�)=g
l

0

80n 8m dj,

Nmijk (l�, l�� , l�� )=g
l

0

8'i 8'j 80k 8m dj, Hmn (l�)=g
l

0

j8n8m dj.


